
People Friendly & Search Friendly Web Design

Home
Design
SEO
Blog

Understanding Style Precedence in
CSS: Specificity, Inheritance, and the
Cascade

by Steven Bradley
on Tuesday, June 9th, 2009
in CSS

« Jammed Finger, Hacked Sites, And A New Twitter Client

4 Common But Not-So-Visible SEO Mistakes »

Have you ever run into the situation where you’re trying to apply a css style to an
element, but it won’t take? Your page it seems to be ignoring your css, but you can’t
figure out why. Maybe you found yourself using !important or adding an inline style as
a last resort. There’s a good chance the problem you encountered was one of css
precedence.

A better understanding of which css styles take precedence can lead to less
frustration with css, cleaner code, and more organized css so let’s look at three things
that control which css rule applies to a given html element:

Specificity Calculations
Inheritance
The Cascade

Learning these rules will take you to the next level in your css development.

Understanding CSS Style Precedence | Van SEO Design http://www.vanseodesign.com/css/css-specificity-inherit...

1 of 24 12/10/2011 11:12 PM



Specificity Calculations

Imagine your html contains a paragraph with a class of “bio” applied to it. You also
have the following two css rules:

p {font-size: 12px}
p.bio {font-size: 14px}

Would you expect the text in your paragraph to be 12px or 14px? You can probably
guess in this case it will be 14px. The second line of css (p.bio) is more specific than
the first when it comes to your class=”bio” paragraph. However, sometimes the
specificity isn’t so easy to see.

For example consider the following html and css

<div id="sidebar">
<p class="bio">text here</p>
</div>

div p.bio {font-size: 14px}
#sidebar p {font-size: 12px}

The first line of css might seem more specific at first glance, but it’s actually the
second line above that would be more specific to the font-size of your paragraph. Why
is that?

To answer the question we need to consider the rules of specificity.

Specificity is calculated by counting various components of your css and expressing
them in a form (a,b,c,d). This will be clearer with an example, but first the
components.

Element, Pseudo Element: d = 1 – (0,0,0,1)
Class, Pseudo class, Attribute: c = 1 – (0,0,1,0)
Id: b = 1 – (0,1,0,0)
Inline Style: a = 1 – (1,0,0,0)

An id is more specific than a class is more specific than an element.

You calculate specificity by counting each of the above and adding 1 to either a,b,c, or
d. It’s also important to note that 0,0,1,0 is more specific than 0,0,0,15. Let’s look at
some examples to make the calculation clearer.

p: 1 element – (0,0,0,1)
div: 1 element – (0,0,0,1)
#sidebar: 1 id – (0,1,0,0)
div#sidebar: 1 element, 1 id – (0,1,0,1)
div#sidebar p: 2 elements, 1 id – (0,1,0,2)
div#sidebar p.bio: 2 elements, 1 class, 1 id – (0,1,1,2)

Let’s look again at the example above

Understanding CSS Style Precedence | Van SEO Design http://www.vanseodesign.com/css/css-specificity-inherit...

2 of 24 12/10/2011 11:12 PM



div p.bio {font-size: 14px} - (0,0,1,2)
#sidebar p {font-size: 12px} - (0,1,0,1)

The second has the higher specificity and thus takes precedence.

One last point before we move on. Importance trumps specificity, When you mark a
css property with !important you’re overriding specificity rules and so

div p.bio {font-size: 14px !important}
#sidebar p {font-size: 12px}

means the first line of css above takes precedence instead of the second. !important is
still mostly a hack around the basic rules and is something you should never need if
you understand how the rules work.

Inheritance

The idea behind inheritance is relatively easy to understand. Elements inherit styles
from their parent container. If you set the body tag to use color: red then the text for
all elements inside the body will also be red unless otherwise specified.

Not all css properties are inherited, though. For example margins and paddings are
non-inherited properties. If you set a margin or padding on a div, the paragraphs
inside that div do not inherit the margin and padding you set on the div. The
paragraph will use the default browser margin and padding until you declare
otherwise.

You can explicitly set a property to inherit styles from it’s parent container, though.
For example you could declare

p {margin: inherit; padding: inherit}

and your paragraph would then inherit both from it’s containing element.

The Cascade

At the highest level the cascade is what controls all css precedence and works as
follows.

Find all css declarations that apply to the element and property in question.1.
Sort by origin and weight. Origin refers to the source of the declaration (author
styles, user styles, browser defaults) and weight refers to the importance of the
declaration. (author has more weight than user which has more weight than
default. !importance has more weight than normal declarations)

2.

Calculate specificity3.
If two rules are equal in all of the above, the one declared last wins. CSS
embedded in the html always come after external stylesheets regardless of the
order in the html

4.

#3 above is likely the one you’ll need to pay attention to most. With #2 just

Understanding CSS Style Precedence | Van SEO Design http://www.vanseodesign.com/css/css-specificity-inherit...

3 of 24 12/10/2011 11:12 PM



understand that your styles will override how a user sets their browser unless they
set their rules to be important.

Also realize that your styles will override the browser defaults, but those defaults do
exist and is often what leads to cross browser issues. Using a reset file like Eric
Meyer’s CSS Reset or Yahoo’s YUI Reset CSS helps take the default styles out of the
equation.

Summary

Hopefully the above helps sort out some of your css precedence issues. Most of the
time if you have a conflict in styles the issue will come down to specificity. At times
when you haven’t declared some css, but an element is behaving in a way you don’t
expect it’s likely that element has inherited some css from a parent container or a
default style of the browser.

A general rule of thumb when declaring your css is to declare properties with the
least specificity needed to style your elements. Use #sidebar instead of div#sidebar
for example. I admit to breaking this general rule far more than I should, but by using
the least specificity needed it will make it easier for you to override a style by
declaring a style more specific.

If you use the most specificity you may run into problems later and find yourself
having to add unnecessary html in order to be able to add more specificity or you may
find yourself falling back on using !important or declaring inline styles. Start with the
least specificity and add more only as needed.

Spread some karma These icons link to social bookmarking sites where readers can
share and discover new web pages.

Subscribe to TheVanBlog | Email This Post

TweetTweet 14

Like 15 likes. Sign Up to see what your friends like.

5

Related Posts.

Do You Use These 7 Attribute Selectors In Your CSS?
Animation With CSS: It’s Easier Than You Think
CSS Background: There’s More To Know Than You Think

Understanding CSS Style Precedence | Van SEO Design http://www.vanseodesign.com/css/css-specificity-inherit...

4 of 24 12/10/2011 11:12 PM


