Fastersite; Finding memory leaks http://gent.il core.com/2011/08/findi ng-memory-| eaks.html

Share = 80 More Next Blog» Create Blog Sign In

Fastersite

On web performance

Sunday, August 7, 2011

About Me

Finding memory leaks

Over lunch last week Mikhail Naganov (creator of the DevTools Heap Profiler) and | were
discussing how invaluable it has been to have the same insight into JavaScript memory
usage that we have into applications written in languages like C++ or Java. But the heap
profiler doesn't seem to get as much attention from developers as | think it deserves. There
could be two explanations: either leaking memory isn't a big problem for web sites or there
is a problem but developers aren't aware of it.

Tony Gentilcore

I'm a software engineer at
Google who enjoys hacking on
Chrome/WebKit to make the

Are memory leaks a problem? web faster.

View my complete profile
For traditional pages where the user is encouraged to navigate from page to page, memory
leaks should almost never be a problem. However, for any page that encourages
interaction, memory management must be considered. Most realize that ultimately if too

)])) i Popular Posts
much memory is consumed the page will be killed, forcing the user to reload it. However,

even before all memory is exhausted performance problems arise:

e A large JavaScript heap means garbage collections may take longer.

e Greater system memory pressure means fewer things can be cached (both in

Finding memory leaks
How a web page loads

Chrome's 10 Caches

the browser and the OS).

How (not) to trigger a layout in
e The OS may start paging or thrashing which can make the whole system feel WebKit

sluggish.

.) . Optimizing with the timeline
These problems are of course exacerbated on mobile devices which have less RAM.

panel
A real world walkthrough
So, in order to demonstrate this is a real world problem and how easily the heap profiler Blog Archive
can diagnose it, | set out to find a memory leak in the wild. A peak at the task manager > 2012 (4
(Wrench > Tools > Task Manager) for my open tabs showed a good candidate for “)
investigation: Facebook is consuming 410MB!! v 2011 (8)

» December (1)

Page Memow|CP Network FPS JavaScript memory
EiTab Facebeok 410M8 0.1 0 9 $5,079% (96,851K live) v August (1)
Finding memory
Pinpoint the leaky action leaks
The first step in finding a memory leak is to isolate the action that leaks. So | loaded > ey (2)
facebook.com in a new tab. The fresh instance used only 49MB -- another indicator the » March (1)

410MB might have been due to a leak. To observe memory use over time, | opened the
Inspector's 'ime 1 ine panel, selected the Memory tab and pressed the record button. At
rest, the page displays a typical pattern of allocation and garbage collection. This is not a
leak.

» February (1)
» January (2)

> 2008 (4)
> 2006 (2)

While keeping an eye on the graph, | began navigating around the site. | eventually noticed There was an error in this

that each time | clicked the Events link on the left side, memory usage would rise but never

l1of 8 12/10/2012 9:59 AM

Fastersite; Finding memory leaks

20f 8

be collected. This is how the usage grows as | repeatedly click the link. A quintessential
leak.

(85 Dements () Resources () Nemwork g scriges | (Primeinel 2 Q@

Tematoes |

As an aside, this leak isn't a browser bug. The OS task manager shows similar memory
growth when performing the same action in Firefox.

Find the leaked memory

Now that we know we have a leak, the obvious next question is what is leaking. The heap
profiler's ability to compare heap snapshots is the perfect tool to answer it. To use it, |
reloaded a new instance and took a snapshot by clicking the heap snapshot button at the
bottom of the Profiles panel. Next, | performed the leaky action a prime number of times
in hopes that it might be easy to spot. So | clicked Events 13 times and immediately took a
second snapshot. To compare before and after, | highlighted the second snapshot and
selected Comparison view.

Summary

Containment
Dominators

e

The comparison view displays the difference between any two snapshots. | sorted by delta
to look for any objects that grew by the same number of times | clicked: 13. Sure enough,
there were 13 more Ul Pagelets on the heap after my clicks than before.

Constructor #New # Deleted -i—w-(Alloc. Size Freed Size A

» InternalArray 44 21 +23 7048 3368 +3688
» chrome.Event 28 10 +18 5608 2008 +3608
» Arguments 32 17 +15 6008 3208 +2808B
» DOMWindow 28 13 +15 7608 3408 +4208
(> UPageler | 13 0 413/ 8328 08| +8328]
» HTMLDocument 21 11 +10 4208 2208 +2008
» (number) 20 13 +7 2408 1568 +84B
» Boolean 10 5 +5 1608 80B +808B
» Date 13 8 +5 2088 1288 +808
» ErrorPrototype 10 S +5 2808 1408 +1408
» JSON 10 5 +5 1208 608 +60B
» MathConstructor 10 5 +5 2808 1408 +1408

Expanding the UlPagelet shows us each instance. Let's look at the first.

Constructor #New #Deleted A v Alloc. Size Freed Size A
¥ UlPagelet 13 0 +13 8328 0B +8328
vUIPagelet @124373 . 648

» _allow_cross_page_transition: syst..
» _append: s / Oddball @143775
» _context_data: Object @339607

» _data: Object @119347

» _element: HTMLDivElement @287963

» _handler: function bagofholding() ..
_id: "c4e3dcdd@9006d3d21499571" @3..
»_is_bundle: tem / Oddball @

> _request: sy m / Oddball
_src: "/ajax/pagelet/generic.php/W..

3

Eachinstance has an _element property that points to a DOM node. Expanding that node,
we can see that it is part of a detached DOM tree of 136 nodes. This means that 136
nodes are no longer visible in the page, but are being held alive by a JavaScript reference.
There are legitimate reasons to do this, but it is also easy and common to do it by accident.

gadget

http://gent.il core.com/2011/08/findi ng-memory-| eaks.html

12/10/2012 9:59 AM

Fastersite; Finding memory leaks http://gent.il core.com/2011/08/findi ng-memory-| eaks.html

Constructor #New # Deleted \uw| Alloc. Size | Freed Size A
¥ UlPagelet 13 0 +13 8328 0B +8328
vUIPagelet @124373 . 648
» _allow_cross_page_transition: syst..
» _append: system / Oddball @143775

» _context_data: Object @339607

» _data: Object @119347

v_element: HTMLDivElement @267963 . | | | | |
»ele ts: [] @17973

Map @54723

Detached DOM tree / 136 ..
es: [] @17973
»__proto__: Object @66665

Note that all memory statistics reported by the tool reflect only the memory allocated in the
JavaScript heap. This does not include native memory used by the DOM objects. So we
cannot readily determine how much memory those 136 nodes are using. It all depends on
their content -- for example leaking images can burn through memory very quickly.

Determine what prevents collection

After finding the leaked memory the last question is what is preventing it from being
collected. To answer this we simply highlight any node and the retaining path will be shown
(I typically change it to show paths to window objects instead of paths to GC roots). Here
we see a very simple path. The ULPageletsare storedina UlControllerRegistry

object.

Constructor #New # Deleted MWW Alloc. Size | Freed Size A

¥ UlPagelet 13 0 +13 8328 0B +8328
» UIPagelet @124373 . 648
» UIPagelet @244605 . 648
» UIPagelet @246579 . 648

Paths from the selected object to window objects %

Retaining path ‘Length A

DOMWindow / www.facebook.com/events/@205151.__UlControllerRegistry{properties {109} 3

DOMWindow / www.facebook.com/events/@205151{properties{2773H1}.c4e3dcdd09006d3d21499571 4

At first | wondered if this might intentionally keep DOM nodes alive as a cache. However,
that doesn't seem to be the case. A search of the source JS shows several places where
items are added tothe UlControllerRegistry, but | couldn't find anywhere where
they are cleaned up. So this appears to be a case where retaining the DOM nodes is purely
accidental. The fix is to remove references to these nodes so they may be collected.

Takeaway

The point of the post is not that facebook has a leak. Facebook is an extremely well
engineered site and large apps all deal with memory leaks from time to time. The point is to
demonstrate how readily leaks can be diagnosed even with no knowledge of the source.

For anyone with an interactive web site, | highly recommend using your site for a few
minutes with the memory timeline enabled to watch for any suspicious growth. If you have
to solve any issues, the manual has excellent tutorials.

Posted by Tony Gentilcore at 5:44 AM [

30 comments:

|- daniel15 said...

Great article! Thanks. :)

This is one of the advantages of Chrome (and IES+) running every site as a
separate process. If a site starts using a large amount of RAM, you can just
close the tab and open it again. With other browsers, often you need to restart
the whole browser.

August 7, 2011 6:49 PM

30f 8 12/10/2012 9:59 AM

