Free Trial || Request Demo

» Products v

NGINX Plus

Technical Specifications

NGINX Plus Releases

Compare Versions

Price & Buy

NGINX Plus for AWS

NGINX Plus for Azure

NGINX Plus for Google Cloud Platform

» Solutions v

Load Balancing

Application Delivery Controller
Microservices

Move to the Cloud

API| Gateway

Web & Mobile Acceleration
Application Security

Web Server

» Resources v

Admin Guide

Library

Webinars

Events

Community Resources
Community Wiki

@

» Support & Services ¥

Support
Professional Services
Training

» Company ¥

About Us
Careers
Partners
Leadership
Press

https://www.nginx.com/
https://www.nginx.com/blog/
https://www.nginx.com/category/tech/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nginx.com/blog/author/tony/
https://www.nginx.com/blog/tag/permalinks/
https://www.nginx.com/blog/tag/rewrite-rules/
https://www.nginx.com/blog/tag/ssltls/
https://www.nginx.com/blog/tag/wordpress/
https://www.nginx.com/blog/converting-apache-to-nginx-rewrite-rules/?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
https://twitter.com/intent/tweet?text=Creating+NGINX+Rewrite+Rules+by+%40nginx+https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F
http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F&title=Creating+NGINX+Rewrite+Rules&summary=In+this+blog+post%2C+we+discuss+how+to+create+NGINX+rewrite+rules+%28the+same+methods+work+for+both+NGINX%26nbsp%3BPlus+and+the+open+source+NGINX+software%29.+Rewrite+rules+change+part+or+all+of+the+URL+in+a+client+request%2C+usually+for+one+of+two+purposes%3A+To+inform+clients+that+the+resource+they%E2%80%99re+requesting+now+resides+at+%5B%26hellip%3B%5D
https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F&t=Creating%20NGINX%20Rewrite%20Rules&text=In%20this%20blog%20post,%20we%20discuss%20how%20to%20create%20NGINX%20rewrite%20rules%20(the%20same%20methods%20work%20for%20both%20NGINX%C2%A0Plus%20and%20the%20open%20source%20NGINX%20software).%20Rewrite%20rules%20change%20part%20or%20all%20of%20the%20URL%20in%20a%20client%20request,%20usually%20for%20one%20of%20two%20purposes:%20To%20inform%20clients%20that%20the%20resource%20they%E2%80%99re%20requesting%20now%20resides%20at%20%5B%E2%80%A6%5D
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F
https://plus.google.com/share?url=https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F
http://www.reddit.com/submit?url=https%3A%2F%2Fwww.nginx.com%2Fblog%2Fcreating-nginx-rewrite-rules%2F&title=Creating+NGINX+Rewrite+Rules&text=In+this+blog+post%2C+we+discuss+how+to+create+NGINX+rewrite+rules+%28the+same+methods+work+for+both+NGINX%26nbsp%3BPlus+and+the+open+source+NGINX+software%29.+Rewrite+rules+change+part+or+all+of+the+URL+in+a+client+request%2C+usually+for+one+of+two+purposes%3A+To+inform+clients+that+the+resource+they%E2%80%99re+requesting+now+resides+at+%5B%26hellip%3B%5D
https://www.nginx.com/blog/
https://www.nginx.com/category/tech/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/#free-trial
https://www.nginx.com/blog/creating-nginx-rewrite-rules/#contact-us
https://www.nginx.com/
https://www.nginx.com/products/
https://www.nginx.com/products/
https://www.nginx.com/products/technical-specs/
https://www.nginx.com/resources/admin-guide/nginx-plus-releases/
https://www.nginx.com/products/feature-matrix/
https://www.nginx.com/products/pricing/
https://www.nginx.com/products/nginx-plus-aws/
https://www.nginx.com/products/nginx-plus-microsoft-azure/
https://www.nginx.com/products/nginx-plus-google-cloud-platform/
https://www.nginx.com/solutions/
https://www.nginx.com/solutions/load-balancing/
https://www.nginx.com/solutions/adc/
https://www.nginx.com/solutions/microservices/
https://www.nginx.com/solutions/cloud/
https://www.nginx.com/solutions/api-gateway/
https://www.nginx.com/solutions/web-mobile-acceleration/
https://www.nginx.com/solutions/application-security/
https://www.nginx.com/solutions/web-server/
https://www.nginx.com/resources/
https://www.nginx.com/resources/admin-guide/
https://www.nginx.com/resources/library/
https://www.nginx.com/resources/webinars/
https://www.nginx.com/resources/events/
https://www.nginx.com/resources/more/
https://www.nginx.com/resources/wiki/
https://www.nginx.com/faqs/
https://www.nginx.com/support-services/
https://www.nginx.com/support/
https://www.nginx.com/services/
http://university.nginx.com/
https://www.nginx.com/company/
https://www.nginx.com/company/
https://www.nginx.com/jobs/
https://www.nginx.com/partners/
https://www.nginx.com/leadership-team/
https://www.nginx.com/press/

Customers
Blog

Q 1-800-915-9122

b §
Login

The two directives for general-purpose NGINX rewrite are return and rewrite, and the try file ’

directive is a handy way to direct requests to application servers. Let's review what the directives do
and how they differ.

The return Directive

The return directive is the simpler of the two general-purpose directives and for that reason we
recommend using it instead of rewrite when possible (more later about the why and when). You
enclose the returnina server or location context that specifies the URLs to be rewritten, and it

defines the corrected (rewritten) URL for the client to use in future requests for the resource.

Here's a very simple example that redirects clients to a new domain name:

server {
listen 80;
listen 443 ssl;
server_name www.old-name.com;

return 301 $scheme://www.new-name.com$request_uri;

The 1isten directives mean the server block applies to both HTTP and HTTPS traffic. The
server name directive matches request URLs that have domain name www.old-name.com. The
return directive tells NGINX to stop processing the request and immediately send code

301 (Moved Permanently) and the specified rewritten URL to the client. The rewritten URL uses
two NGINX variables to capture and replicate values from the original request URL: $scheme is the

protocol (http or https) and $request_uri is the full URI including arguments.

For a code in the 3xx series, the url parameter defines the new (rewritten) URL.

http://perldoc.perl.org/perlre.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/r/return?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/en/docs/http/ngx_http_core_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog#server
http://nginx.org/en/docs/http/ngx_http_core_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog#location
http://nginx.org/en/docs/http/ngx_http_core_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog#listen
http://nginx.org/en/docs/http/ngx_http_core_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog#server_name
http://nginx.org/en/docs/varindex.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
https://www.nginx.com/customers/
https://www.nginx.com/blog/
tel:+18009159122
https://cs.nginx.com/login
https://www.nginx.com/blog/creating-nginx-rewrite-rules/#

return (301 | 302 | 303 | 307) url;

For other codes, you optionally define a text string which appears in the body of the response (the
standard text for the HT TP code, such as Not Found for 404, is still included in the header). The text

can contain NGINX variables.

return (1xx | 2xx | 4xx | 5xx) ["text"];

For example, this directive might be appropriate when rejecting requests that don't have a valid

authentication token:

return 401 "Access denied because token is expired or invalid";

There are also a couple syntactic shortcuts you can use, such as omitting the code if it is 302; see

the reference documentation for the return directive.

(In some cases, you might want to return a response that is more complex or nuanced than you can

achieve in a text string. With the error_page directive, you can return a complete custom HTML

page for each HTTP code, as well as change the response code or perform a redirect))

So the return directive is simple to use, and suitable when the redirect meets two conditions: the
rewritten URL is appropriate for every request that matches the server or location block, and you

can build the rewritten URL with standard NGINX variables.

The rewrite Directive

But what if you need to test for more complicated distinctions between URLS, capture elements in
the original URL that don't have corresponding NGINX variables, or change or add elements in the

path? You can use the rewrite directive in such cases.

Like the return directive, you enclose the rewrite directive in a server or location context that

defines the URLs to be rewritten. Otherwise, the two directives are rather more different than

http://nginx.org/r/return?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/r/error_page?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/r/rewrite?utm_source=creating-nginx-rewrite-rules&utm_medium=blog

similar, and the rewrite directive can be more complicated to use correctly. Its syntax is simple

enough:

rewrite regex URL [flag];

But the first argument, regex, means that NGINX Plus and NGINX rewrite the URL only if it matches
the specified regular expression (in addition to matching the server or location directive). The

additional test means NGINX must do more processing.

A second difference is that the rewrite directive can return only code 301 or 302. To return other

codes, you need to include a return directive after the rewrite directive (see the example below).

And finally the rewrite directive does not necessarily halt NGINX's processing of the request as
return does, and it doesn't necessarily send a redirect to the client. Unless you explicitly indicate
(with flags or the syntax of the URL) that you want NGINX to halt processing or send a redirect, it
runs through the entire configuration looking for directives that are defined in the Rewrite module

(break, if, return, rewrite, and set), and processes them in order. If a rewritten URL matches a

subsequent directive from the Rewrite module, NGINX performs the indicated action on the

rewritten URL (often rewriting it again).

This is where things can get complicated, and you need to plan carefully how you order the

directives to get the desired result. For instance, if the original location block and the NGINX

rewrite rules in it match the rewritten URL, NGINX can get into a loop, applying the rewrite over and
over up to the built-in limit of 10 times. To learn all the details, see the documentation for the Rewrite

module. As previously noted, we recommend that where possible you use the return directive

instead.

Here's a sample NGINX rewrite rule that uses the rewrite directive. It matches URLs that begin with

the string /download and then include the /media/ or faudio/ directory somewhere later in the
path. It replaces those elements with /mp3/ and adds the appropriate file extension, .mp3 or .ra.

The $1 and $2 variables capture the path elements that aren't changing. As an example,

/download/cdn-west/media/file1 becomes /download/cdn-west/mp3/file1.mp3.

http://nginx.org/en/docs/http/ngx_http_rewrite_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog

server {

rewrite ~(/download/.*)/media/(.*)\..*$ $1/mp3/$2.mp3 last;
rewrite ~(/download/.*)/audio/(.*)\..*$ $1/mp3/$2.ra 1last;
return 403;

We mentioned above that you can add flags to a rewrite directive to control the flow of
processing. The last flag in the example is one of them: it tells NGINX to skip any subsequent
Rewrite-module directives in the current server or location block and start a search for a new

location that matches the rewritten URL.

The final return directive in this example means that if the URL doesn't match either rewrite

directive, code 403 is returned to the client.

The try files directive

Like the return and rewrite directives, the try files directiveis placed ina server or location

block. As parameters, it takes a list of one or more files and directories and a final URI:

try_files file .. uri;

NGINX checks for the existence of the files and directories in order (constructing the full path to

each file from the settings of the root and alias directives), and serves the first one it finds. To

indicate a directory, add a slash at the end of the element name. If none of the files or directories

exist, NGINX performs an internal redirect to the URI defined by the final element (uri).

For the try_files directive to work, you also need to define a location block that captures the

internal redirect, as shown in the following example. The final element can be a named location,

indicated by an initial at-sign (@).

The try_files directive commonly uses the $uri variable, which represents the part of the URL

after the domain name.

http://nginx.org/r/try_files?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/r/root?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/r/alias?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
http://nginx.org/en/docs/http/ngx_http_core_module.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog#var_uri

In the following example, NGINX serves a default GIF file if the file requested by the client doesn't
exist. When the client requests (for example) http://www.domain.com/images/image1.gif, NGINX
first looks for image1.gif in the local directory specified by the root or alias directive that applies
to the location (not shown in the snippet). If image1.gif doesn't exist, NGINX looks for image1.gif/,
and if that doesn't exist, it redirects to /images/default.gif. That value exactly matches the second

location directive, so processing stops and NGINX serves that file and marks it to be cached for

30 seconds.

location /images/ {
try files $uri $uri/ /images/default.gif;
}

location = /images/default.gif {
expires 30s;

}

Examples — Standardizing the Domain Name

One of the most common uses of NGINX rewrite rules is to capture deprecated or nonstandard
versions of a website's domain name and redirect them to the current name. There are several

related use cases.

Redirecting from a Former Name to the Current Name

This sample NGINX rewrite rule permanently redirects requests from www.old-name.com and
old-name.com to www.new-name.com, using two NGINX variables to capture values from the

original request URL — $scheme is the original protocol (http or https) and $request_uri is the full

URI (following the domain name), including arguments:

server {
listen 80;
listen 443 ssl;
server_name www.old-name.com old-name.com;

return 301 $scheme://www.new-name.com$request_uri;

Because $request_uri captures the portion of the URL that follows the domain name, this rewrite
is suitable if there's a one-to-one correspondence of pages between the old and new sites (for
example, www.new-name.com/about has the same basic content as www.old-name.com/about).
If you've reorganized the site in addition to changing the domain name, it might be safer to redirect

all requests to the home page instead, by omitting $request_uri;

server {
listen 80;
listen 443 ssl;
server_name www.old-name.com old-name.com;

return 301 $scheme://www.new-name.com;

Some other blogs about rewriting URLs in NGINX use the rewrite directive for these use cases,

like this:;

NOT RECOMMENDED

rewrite ~ $scheme://www.new-name.com$request uri permanent;

This is less efficient than the equivalent return directive, because it requires NGINX to process a
regular expression, albeit a simple one (the caret [~], which matches the complete original URL).
The corresponding return directive is also easier for a human reader to interpret: return 301 more

clearly indicates that NGINX returns code 301 than the rewrite ... permanent notation does.

Adding and Removing the www Prefix

These examples add and remove the www prefix:

add "www'

server {
listen 80;
listen 443 ssl;
server_name domain.com;

return 301 $scheme://www.domain.com$request_uri;

remove 'www'
server {
listen 80;
listen 443 ssl;
server_name www.domain.com;
return 301 $scheme://domain.com$request uri;

Again, return is preferable to the equivalent rewrite, which follows. The rewrite requires
interpreting a reqgular expression — ~(.*)$ —and creating a custom variable ($1) that in fact is

equivalent to the built-in $request_uri variable.

NOT RECOMMENDED

rewrite ~(.*)$ $scheme://www.domain.com$l permanent;

Redirecting All Traffic to the Correct Domain Name

Here's a special case that redirects incoming traffic to the website's home page when the request

URL doesn't match any server and location blocks, perhaps because the domain name is
misspelled. It works by combining the default_server parameter to the 1listen directive and the

underscore as the parameter to the server_name directive.

server {
listen 80 default server;
listen 443 ssl default_server;
server_name _;

return 301 $scheme://www.domain.com;

We use the underscore as the parameter to server_name to avoid inadvertently matching a real

domain name —it's safe to assume that no site will ever have the underscore as its domain name.

Requests that don't match any other server blocks in the configuration end up here, though, and
the default_server parameter to listen tells NGINX to use this block for them. By omitting the
$request _uri variable from the rewritten URL, we redirect all requests to the home page, a good

idea because requests with the wrong domain name are particularly likely to use URIs that don't

exist on the website.

Example — Forcing all Requests to Use SSL/TLS

This server block forces all visitors to use a secured (SSL/TLS) connection to your site.

server {
listen 80;
server_name www.domain.com;

return 301 https://www.domain.com$request uri;

Some other blogs about NGINX rewrite rules use an if test and the rewrite directive for this use

case, like this:

NOT RECOMMENDED
if ($scheme != "https") {
rewrite ~ https://www.mydomain.com$uri permanent;

But this method takes extra processing because NGINX must both evaluate the if condition and

process the regular expression in the rewrite directive.

Example — Enabling Pretty Permalinks for
WordPress Websites

NGINX and NGINX Plus are very popular application delivery platforms for websites that use

WordPress. The following try_files directive tells NGINX to check for the existence of a file, $uri,
and then directory, $uri/. If neither the file or directory exists, NGINX returns a redirect to

/lindex.php and passes the query-string arguments, which are captured by the $args parameter.

location / {
try files $uri $uri/ /index.php?$args;

Example — Dropping Requests for Unsupported
File Extensions

For various reasons, your site might receive request URLs that end in a file extension corresponding
to an application server you're not running. In this example from the Engine Yard blog, the
application server is Ruby on Rails, so requests with file types handled by other application servers

(Active Server Pages, PHP, CGl, and so on) cannot be serviced and need to be rejected. In a server
block that passes any requests for dynamically generated assets to the app, this location

directive drops requests for non-Rails file types before they hit the Rails queue.

location ~ \.(aspx|php|jsp|cgi)$ {
return 410;

Strictly speaking, response code 410 (Gone) is intended for situations when the requested

resource used to be available at this URL but is no longer, and the server does not know its current

location, if any. Its advantage over response code 404 is that it explicitly indicates the resource is

permanently unavailable, so clients won't send the request again.

You might want to provide clients with a more accurate indication of the reason for the failure, by

returning response code 403 (Forbidden) and an explanation such as "Server handles only
Ruby requests™ as the text string. As an alternative, the deny all directive returns 403 without an

explanation:

location ~ \.(aspx|php|jsp|cgi)$ {
deny all;

Code 403 implicitly confirms that the requested resource exists, so code 404 might be the better

choice if you want to achieve “security through obscurity” by providing the client with as little

https://blog.engineyard.com/2011/useful-rewrites-for-nginx?utm_source=creating-nginx-rewrite-rules&utm_medium=blog

information as possible. The downside is that clients might repeatedly retry the request because

404 does not indicate whether the failure is temporary or permanent.

Example — Configuring Custom Rerouting

In this example from MODXCloud, you have a resource that functions as a controller for a set of
URLSs. Your users can use a more readable name for a resource, and you rewrite (not redirect) it to be

handled by the controller at listing.html.
rewrite ~/listings/(.*)$ /listing.html?listing=$1 last;

As an example, the user-friendly URL http://mysite.com/listings/123 is rewritten to a URL handled
by the listing.html controller, http://mysite.com/listing.html?listing=123.

2016 Gartner Magic Quadrant for ADCs

Critical Capabilities for Application Delivery

Controllers
Published: 29 August 2016 1D:

DOWNLOAD NOW (>

ABOUT NGINX

NGINX is the heart of the modern web, powering half of the world's busiest sites and applications.

https://modxcloud.com/userguide/using-modx-cloud/tools-and-configuration/web-rules-rewrites-redirects-tweaks.html?utm_source=creating-nginx-rewrite-rules&utm_medium=blog
https://www.nginx.com/resources/library/gartner-magic-quadrant-2016-for-adc/

The company's comprehensive application delivery platform combines load balancing, content
caching, web serving, security controls, and monitoring in one easy-to-use software package.

CATEGORIES

Events
News
Tech
Opinion
More »

TOP POSTS

Creating NGINX Rewrite Rules

Introduction to Microservices

Building Microservices: Using an API Gateway

A Guide to Caching with NGINX and NGINX Plus
Service Discovery in a Microservices Architecture

https://www.nginx.com/products/
https://www.nginx.com/category/events/
https://www.nginx.com/category/news/
https://www.nginx.com/category/tech/
https://www.nginx.com/category/opinion/
https://www.nginx.com/blog/creating-nginx-rewrite-rules/#
https://www.nginx.com/blog/creating-nginx-rewrite-rules/
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/building-microservices-using-an-api-gateway/
https://www.nginx.com/blog/nginx-caching-guide/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/

TRY NGINX PLUS FOR FREE

ASK US A QUESTION

Sign up for newsletter

Products

NGINX Plus

Technical Specifications
Compare Versions

Price & Buy

NGINX Plus for AWS
NGINX Plus for Azure

NGINX Plus for Google Cloud
Platform

Resources

Admin Guide
Library

Webinars

Solutions

Load Balancing

Application Delivery Controller
Microservices

Move to the Cloud

AP| Gateway

Web & Mobile Acceleration
Application Security

Web Server

Company

About Us
Careers

Partners

https://www.nginx.com/blog/creating-nginx-rewrite-rules/#free-trial
https://www.nginx.com/blog/creating-nginx-rewrite-rules/#contact-us
https://www.nginx.com/products/
https://www.nginx.com/products/
https://www.nginx.com/products/technical-specs/
https://www.nginx.com/products/feature-matrix/
https://www.nginx.com/products/pricing/
https://www.nginx.com/products/nginx-plus-aws-old/
https://www.nginx.com/products/nginx-plus-microsoft-azure/
https://www.nginx.com/products/nginx-plus-google-cloud-platform/
https://www.nginx.com/solutions/
https://www.nginx.com/solutions/load-balancing/
https://www.nginx.com/solutions/adc/
https://www.nginx.com/solutions/microservices/
https://www.nginx.com/solutions/cloud/
https://www.nginx.com/solutions/api-gateway/
https://www.nginx.com/solutions/web-mobile-acceleration/
https://www.nginx.com/solutions/application-security/
https://www.nginx.com/solutions/web-server/
https://www.nginx.com/resources/
https://www.nginx.com/blog/nx_info_types/admin-guide/
https://www.nginx.com/resources/library/
https://www.nginx.com/resources/webinars/
https://www.nginx.com/company/
https://www.nginx.com/company/
https://www.nginx.com/jobs/
https://www.nginx.com/partners/

Events

Community Resources
Community Wiki

FAQ

Support & Services

Support
Professional Services

Training

Connect With Us

Stay in the Loop

enter your email

Leadership

Press

Customers

Blog

https://www.nginx.com/resources/events/
https://www.nginx.com/resources/more/
https://www.nginx.com/resources/wiki/
https://www.nginx.com/faqs/
https://www.nginx.com/support-services/
https://www.nginx.com/support/
https://www.nginx.com/services/
http://university.nginx.com/
https://www.nginx.com/leadership-team/
https://www.nginx.com/press/
https://www.nginx.com/customers/
https://www.nginx.com/blog/

