
5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 1/10

YOU MIGHT ALSO LIKE

Occasionally when accessing a client network, I encounter a situation where certain servers are not

accessible despite everyone else on the team being able to access the same domain, either by HTTP or

SSH. It turns out a frequent culprit of this problem is Docker and it's networking mechanisms.

When you start up Docker, it appropriates some IP addresses for it's own usage. These are usually in the

local networking space, which include the following:

Discovering Conflicts

Fixing Docker and VPN IP
Address Conflicts
by Nate Lampton August 15, 2019

Creating Default Docker Networks
(https://github.com/docker/compose/issues/4336)

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

https://www.lullabot.com/about/nate-lampton
https://github.com/docker/compose/issues/4336

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 2/10

You can easily find which IP addresses are being used by your local network or VPN by using route

-n . Connect to your VPN first then run this command.

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 3/10

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use

Iface

0.0.0.0 192.168.1.1 0.0.0.0 UG 600 0 0

wlp2s0

128.2.5.132 192.168.1.1 255.255.255.255 UGH 600 0 0

wlp2s0

172.16.0.0 0.0.0.0 255.255.0.0 U 50 0 0

vpn0

172.18.6.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.18.11.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.19.0.0 0.0.0.0 255.255.0.0 U 50 0 0

vpn0

172.19.238.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.19.247.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.19.249.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.20.0.0 0.0.0.0 255.255.0.0 U 50 0 0

vpn0

172.20.40.0 0.0.0.0 255.255.254.0 U 50 0 0

vpn0

172.20.42.0 0.0.0.0 255.255.254.0 U 50 0 0

vpn0

172.20.45.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.20.46.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 4/10

Looking at this above data, we can derive that the IP address between the ranges of 172.16.x.x and

172.29.x.x are not safe for docker to use.

To determine what IP addresses docker itself is using, we can use the ip addr command to see what

addresses the networking bridges claim.

Prior to starting docker and any containers:

172.21.0.0 0.0.0.0 255.255.0.0 U 50 0 0

vpn0

172.22.8.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.22.25.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.22.114.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.22.115.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.24.2.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.24.238.0 0.0.0.0 255.255.255.0 U 50 0 0

vpn0

172.29.48.0 0.0.0.0 255.255.240.0 U 50 0 0

vpn0

172.29.80.0 0.0.0.0 255.255.240.0 U 50 0 0

vpn0

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 5/10

And then after starting docker:

$ ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: wlp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state

UP group default qlen 1000

 link/ether 9c:b6:d0:92:d5:b1 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.245/24 brd 192.168.1.255 scope global dynamic

noprefixroute wlp2s0

 valid_lft 85363sec preferred_lft 85363sec

 inet6 fe80::69fe:7762:4ecd:d5ae/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

3: enx8cae4cf13353: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

fq_codel state DOWN group default qlen 1000

 link/ether 8c:ae:4c:f1:33:53 brd ff:ff:ff:ff:ff:ff

4: vpn0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1300 qdisc fq_codel

state UP group default qlen 500

 link/none

 inet 172.31.235.27/16 brd 172.31.255.255 scope global noprefixroute

vpn0

 valid_lft forever preferred_lft forever

 inet6 fe80::5b9c:a58c:5b5a:6b90/64 scope link stable-privacy

 valid_lft forever preferred_lft forever

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 6/10

$ ip addr

ip addr

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

2: wlp2s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state

UP group default qlen 1000

 link/ether 9c:b6:d0:92:d5:b1 brd ff:ff:ff:ff:ff:ff

 inet 192.168.1.245/24 brd 192.168.1.255 scope global dynamic

noprefixroute wlp2s0

 valid_lft 85977sec preferred_lft 85977sec

 inet6 fe80::69fe:7762:4ecd:d5ae/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

3: enx8cae4cf13353: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

fq_codel state DOWN group default qlen 1000

 link/ether 8c:ae:4c:f1:33:53 brd ff:ff:ff:ff:ff:ff

4: vpn0: <POINTOPOINT,MULTICAST,NOARP,UP,LOWER_UP> mtu 1300 qdisc fq_codel

state UP group default qlen 500

 link/none

 inet 172.31.235.27/16 brd 172.31.255.255 scope global noprefixroute

vpn0

 valid_lft forever preferred_lft forever

 inet6 fe80::5b9c:a58c:5b5a:6b90/64 scope link stable-privacy

 valid_lft forever preferred_lft forever

5: br-05743ccfd659: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default

 link/ether 02:42:d8:4d:41:60 brd ff:ff:ff:ff:ff:ff

 inet 172.20.0.1/16 brd 172.20.255.255 scope global br-05743ccfd659

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 7/10

We can see from the above that Docker has claimed 172.18.0.1/16 - 172.21.0.1/16. Which will make it so

that routes specified by the VPN or local network will not work.

How to fix this?

First list your current docker networks.

 valid_lft forever preferred_lft forever

6: br-08e37aab0021: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default

 link/ether 02:42:40:a3:a0:63 brd ff:ff:ff:ff:ff:ff

 inet 172.21.0.1/16 brd 172.21.255.255 scope global br-08e37aab0021

 valid_lft forever preferred_lft forever

8: br-70d04f7b2a8c: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default

 link/ether 02:42:35:bb:bc:eb brd ff:ff:ff:ff:ff:ff

 inet 172.19.0.1/16 brd 172.19.255.255 scope global br-70d04f7b2a8c

 valid_lft forever preferred_lft forever

9: br-86768d2533cf: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc

noqueue state DOWN group default

 link/ether 02:42:71:49:8e:d7 brd ff:ff:ff:ff:ff:ff

 inet 172.18.0.1/16 brd 172.18.255.255 scope global br-86768d2533cf

 valid_lft forever preferred_lft forever

10: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue

state DOWN group default

 link/ether 02:42:a0:61:83:8f brd ff:ff:ff:ff:ff:ff

 inet 172.240.0.1/24 brd 172.240.0.255 scope global docker0

 valid_lft forever preferred_lft forever

34

35

36

37

38

39

40

41

42

43

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 8/10

Those "bridge" entries map to the "br-" prefixed entries seen in the ip addr listing.

You can determine which networks are claiming which subnets by using docker network inspe

ct 28881c0a72ad . In the JSON output you'll see something similar to this:

If you have set up these bridges yourself simply removing the networks and recreating them with a

different subnet may be sufficient:

$ docker network list

NETWORK ID NAME DRIVER SCOPE

28881c0a72ad cmu_default bridge local

b736a4c00275 host host local

e87ba6af1530 lando_bridge_network bridge local

7d9a9e0a3797 landoproxyhyperion5000gandalfedition_edge bridge

local

4601ca10be74 none null local

"Subnet": "172.18.0.0/24",

"Gateway": "172.18.0.1"

1

2

docker network rm 05743ccfd659

docker network create --driver=bridge --subnet=192.168.0.0/16 br0

1

2

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 9/10

Better yet, it's a good idea to prevent docker from automatically claiming subnets that are in conflict

with your local network. To fix this you may modify the default daemon.json file used by docker.

Then newly created networks will automatically fit within the specified "base" and "size" parameters.

In my situation, I was using Lando, a docker management tool. So after removing each network and

updating the configuration daemon.json configuration file, I had it regenerate all the networks from

scratch with:

Now all my networks are free from conflicts.

$ vi /etc/docker/daemon.json

{

 "default-address-pools" : [

 {

 "base" : "172.240.0.0/16",

 "size" : 24

 }

]

}

1

2

3

4

5

6

7

8

9

$ lando rebuild 1

5/25/2020 Fixing Docker and VPN IP Address Conflicts | Lullabot

https://www.lullabot.com/articles/fixing-docker-and-vpn-ip-address-conflicts 10/10

Note that individual projects can already specify different subnets in their docker-compose.yml or

.lando.yml files. However, with different users needing different networks, control at that level may not

be desirable.

More information about setting the default networks can be found in this Docker compose issue:

https://github.com/docker/compose/issues/4336 (https://github.com/docker/compose/issues/4336) . Happy

networking!

Nate Lampton

Nate Lampton is a leader in Open Source with over a decade of contributions to the Drupal project. He

joined Lullabot in 2006.

© 2020 Lullabot, Inc.

https://github.com/docker/compose/issues/4336

